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Background

The Web is transitioning away from centralised services to a re-emergent decentralised
platform. This generates demand for technologies that hide complexities of federated
architectures (Verborgh, 2021) so developers can create rich Web 3.0 (Berners-Lee et al.,
2001; Berners-Lee, 2001) applications.

Concurrently, privacy-preserving computation techniques are maturing. With greater
processing power, secure multi-party computation (SMPC) (Cramer et al., 2015) has
evolved from theoretical protocols (Yao, 1986) to applied algorithms and frameworks (Archer
et al., 2018; Agahari et al., 2022). Further, techniques such as Fully Homomorphic En-
cryption (FHE) are approaching commercial viability for the cloud (Creeger, 2022). The
potential of these techniques to protect data in decentralised applications is largely un-
realised as scarce specialist knowledge is required to implement each use-case (Lindell,
2020).

Objectives

I aim to research generalisable techniques for executing queries over arbitrary decen-
tralised data by asking the question:

How can privacy-preserving computation techniques enhance decentralised query
engines?

Specifically, how can engines account for privacy policies, notions of trust and the com-
putational capacity of peers whilst shielding users from:

RO1 privacy-preserving algorithms: by automating algorithm selection during query
planning, as we cannot expect Web developers to select or implement them - just
as developers need not learn HTTPS encryption schemes;

RO2 privacy policies on datasets (Debackere et al., 2022): as applications should be
decoupled from dataset constraints - dealing only with processed and abstracted
facts;

RO3 data views and APIs (Dedecker et al., 2022): instead, querying an abstracted view
- just as developers use URLs without managing DNS lookups to dereference them;
and

RO4 the nature of the source datasets (Slabbinck et al., 2022): for instance, engines
should determine if I can legally drink when my profile contains my exact date of
birth or when it only contains my age as an integer.

RO1 is the core objective. RO2-RO4 ensure the engine is robust across use-cases.
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Outcomes

To investigate this, I shall develop a novel multi-agent query-planning (MAQP) frame-
work in which agents describe their privacy policies and query expressivity in a for-
malised logic. I propose the arbitrary data [RO4] and queries input to the system be
encoded using RDF (Consortium et al., 2014), a mature self-describing data-model for
information-exchange. An initial architecture could have the extended SPARQL API
designed for centralised CQE (Cuenca Grau et al., 2013) which:

• introspects the privacy policies [RO2] of each relevant data-store and query ex-
pressivity [RO3] of each computing agent in the network;

• plans the query operations required by each agent, optimising to maximise the
number of (sound) results produced and minimise the sensitive data shared be-
tween peers [RO1];

• contains query-agents capable of [RO1]:

1. Secure Distributed Inner Joins (SDIJ) (Mohassel et al., 2020);

2. SMPC over literals (Yao, 1986);

3. FHE on cloud infrastructure (Gentry, 2009); and

4. Dialogical Reasoning1 (DR).

• accounts for metadata describing the reliability of data and query agents to produce
confidence intervals for the correctness of results [RO4].

Plan

My three-year research plan, outlined below, assumes the successful development of a
Universal Service Description2 (USD) [RO3], Lowest Common Denominator3 (LCD)
[RO3] and Query Planning4 (Dresselhaus et al., 2021; Riggan et al., 2019) (QP) [RO1]
vocabularies. I plan to complete these collaboratively with SolidLab5 and Inrupt6 prior
to commencing a DPhil.

1. Define use-cases and requirements in collaboration with academia and industry,
and demonstrate these in a zero-privacy context using existing query and reasoning
engines (Nenov et al., 2015; Verborgh and De Roo, 2015; Taelman et al., 2018;
Berners-Lee et al., 2008)78 (2 months).

1https://github.com/SolidLabResearch/Challenges/issues/22
2https://docs.google.com/document/d/1NL5SesXPzhAk0bSIEXjuUaySUY9D0kjWlnwo1V0fj24/
3https://docs.google.com/document/d/1iuvOy14oXeMdx2ltONRq5knEZ9LLokDTfIU_N5k2qJw/
4https://docs.google.com/document/d/1JKcenbf0kvl6OXjIb8XSuGKttS1QIhjVDuzpc0Ba5k0/
5https://solidlab.be/
6https://www.inrupt.com/
7https://github.com/comunica/comunica-feature-reasoning
8https://github.com/rdfjs/N3.js/pull/296
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2. Develop rudimentary MAQPs, testing combinations of existing policy, query and
reasoning profiles against query-agents implementing SDIJ, SMPC, FHE, DR and
other privacy-preserving techniques (6-12 months).

3. Evaluate the MAPQs. Quantitatively, I will measure result quality (number of
sound SELECT results and percentage of determinate ASK results) (Cuenca Grau
et al., 2013), performance on varied network architectures9 and computational
cost. Qualitatively, I will assess the architectural complexity of implementing
each privacy-preserving technique, including the level of “hard-coding” required to
handle distinct data types and values. Specifically, I shall test the hypothesis that
generic SMPC engines (Halevi et al., 2016) can be implemented by dereferencing
machine-readable MPC algorithms (De Meester et al., 2016) that are indexed by
the type signature of the function they evaluate (1 month).

4. Formalise a single logic for expressing policies, queries and reasoning profiles in
MAQPs. As there is no consensus on a logic for the Web (Hayes, 2009), to with-
stand shifts in popular standards, this logic must subsume ‘sensible’ paradigms
(as determined by the previous experiments). I expect these to include descrip-
tion logics (Baader et al., 2003) (DL), SWRL (Horrocks et al., 2004), RDF sur-
faces (De Roo and Hochstenbach, 2022) and RIF (Kifer, 2008). In formalising a
general logic, I shall review existing logics including DL, modal logics (Chagrov,
1997) (which subsume DL and support meta-statements), first-order logic (Smullyan,
1995) (a modal logic with direct correspondence to RDF surfaces) and type the-
ory (Martin-Löf and Sambin, 1984), where proofs as first-class citizens aid prove-
nance (3 months).

5. Iterate on the USD, LSD and QP vocabularies to correspond with the above logic
(1 month), generalise the rudimentary MAQPs to a single MAQP that uses this
formalised logic (4 months) and evaluate it using the aforementioned measures (0.5
months).

6. Investigate provenance (Keskisärkkä et al., 2019) and probabilities (Keskisärkkä
et al., 2020) in MAQPs by exchanging formal proofs with query results (Berners-
Lee et al., 2008), in addition to associating confidence intervals to query results
based on trust in other network members and source data (6-12 months). This
should be evaluated using an extension of the aforementioned metrics (0.5 months).

7. Analyse the security implications of my work by:

a) formally proving that data revealed during query execution cannot be used
to reverse-engineer protected data (Grau et al., 2014; Sweeney, 2000);

b) analysing how to limit query complexity and prevent denial of service at-
tacks (Erling and Mikhailov; Kumar and Kumar, 2014); and

c) investigating link-traversal exploits (Taelman and Verborgh, 2022) (6 months).
9https://github.com/SolidBench/SolidBench.js
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Feasibility

The proposed research plan is feasible in 3-4 years given my expertise in Semantic Web
technologies, proven capacity to perform sustained, intensive research and ability to
rapidly learn abstract concepts. This is demonstrated by my publications in leading
journals (Wright et al., 2020b,a; Méndez et al., 2020; Dedecker et al., 2022) and Univer-
sity Medal for my Honours thesis on Decentralised Web Reasoning. I also have a strong
ability and curiosity in the logical foundation required for this thesis, with a perfect GPA
for my Pure Mathematics and Computer Science Majors, in which I studied the logics
described in this proposal.

Conclusion

As a researcher, I investigate Web technologies that improve the insights and outcomes
that people get from their data. To achieve this at scale, I believe we must improve tech-
niques for obtaining inferences from structured data and logic across the decentralised
Web. My thesis will achieve this by allowing users to easily obtain rich results when
querying over decentralised data with strict privacy policies.
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